File Im

National Aeronautics and Space Administration Goddard Space Flight Center Contract No.NAS-5-12487

ST _ MAT _ 10 523

REPRESENTATION OF SPINORS IN THE $\,n\,$ DIMENSIONAL SPACE BY A SYSTEM OF TENSORS

v. A. Zhelnorovich	GPO PRICE \$
	CFSTI PRICE(S) \$
(USSR)	
	Hard copy (HC)
·	Microfiche (MF)
	ff 653 July 65

N67 12907

(ACCESSION NUMBER)

(PAGES)

(CODE)

(NASA CR OR TMX OR AD NUMBER)

(CATEGORY)

REPRESENTATION OF SPINORS IN THE n-DIMENSIONAL SPACE BY A SYSTEM OF TENSORS

Doklady AN.SSSR, Matematika Tom 169, No. 2, 255-258 Izdatel'stvo "NAUKA", 1966

by V. A. Zhelnorovich

1. BASIC DETERMINATIONS.

Let us consider at the outset a four-dimensional complex Euclidean space $R_n^+,\,n=2\nu,\,$ referred to the orthonormalized base e_i. Let $\gamma_1,\,\gamma_2,\,\ldots,\,\gamma_{2\nu}$ be the dimensionality matrices 2^{ν} , satisfying by definition the equation

$$\gamma_i \gamma_j + \gamma_j \gamma_i = 2\delta_{ij} I, \tag{1}$$

where δ_{ij} is the Kronecker symbol, I is the unitary dimensionality matrix $2^{\mathbf{v}}$. We shall introduce the denotation $\gamma_{i_1,i_2\dots i_R}=i^{h(k-1)/2}\gamma_{i_1}\gamma_{i_2}\dots\gamma_{i_R},\ i_1< i_2<\dots< i_k$. The matrices $I,\,\gamma_i,\,\gamma_{i_1}\gamma_{i_2}\dots i_n$ are linearly independent and form a group of elements. As is well known, any two solutions $\gamma_i,\,\gamma_i$ of Eq. (1) are linked by the equality $\overline{\gamma_i}=T\gamma_i T^{-1},\,\det T\neq 0$, whereupon matrices γ_i may be chosen Hermitian, and in such a fashion that $\gamma_1,\,\gamma_2,\,\ldots,\,\gamma_\nu$ be symmetrical, and $\gamma_{\nu+1},\,\gamma_{\nu+2},\,\ldots,\,\gamma_{2\nu}$ antisymmetrical [1].

Let $L=\|\,l_q^{\,p}\,\|$ be the orthogonal transformation of the space R_{2v}^+ . The multiplicity of unimodular matrices S, determined from the equation

$$\gamma_p = l_p{}^q S \gamma_q S^{-1}, \tag{2}$$

form a group materializing the representation of the group L, called <u>spinor</u> representation.

The object $\psi = \{\psi^i\}$ with components ψ^i determined with a precision to the sign transforming according to the representation of S, is called the <u>first rank spinor</u> in the space R_{2v}^+ .

If γ_i is the solution of (1), it is obvious that γ_i^{T} (γ_i^{T} being the transposed γ_i) is also a solution of (1); this is why there exists a matrix C such that $\gamma_i^{\mathrm{T}} = C\gamma_i C^{-1}$, $\det C = 1$.

If V is odd, it is easy to see that $C=\gamma_{V}\gamma_{V-1}\cdots\gamma_{1}$; if V is even, then $C=\gamma_{2V}\ldots\gamma_{V+1}$ in the case when $\gamma_{1},\gamma_{2},\ldots,\gamma_{V}$ are symmetrical, but $\gamma_{V+1},\gamma_{V+2},\ldots,\gamma_{2V}$ are asymmetrical. Hence it follows that $C^{\intercal}=(-1)^{\gamma(V-1)}C$. If ψ_{1} are the covariant components of the spinor ψ_{1} , then we have by definition $\psi_{1}=e_{ij}\psi_{1}$, where $E=\|e_{ij}\|=i^{n(n-1)/2}\gamma_{n}\gamma_{n+1}\ldots\gamma_{1}C$.

We shall outline in the space R_n^+ the pseudo-Euclidean space R_n^- index s, upon fixing the base $ie_1...ie_se_{s+1}...e_n$. We shall introduce the Hermitian matrix ψ determined from the equations

$$\Pi_{Y_i}\Pi^{-1} = \pm \gamma_i, \quad \Pi\Pi^* = (-1)^{(v-s)(v-s+1)/2}I;$$
 (3)

where the sign minus is for $i=1,\ldots,s$ and the sign plus is for $i=s+1,\ldots$, 2v. The dot above the letter denotes the complex mating. The spinor $\psi=\Pi\psi$ is called conjugate relative to ψ .

Let us consider now the odd-dimensional spaces R_n^+ , n=2v+1, We shall denote $\gamma_{2v+1}=i\gamma_{1,2,\ldots,2v}$. The matrices with an even number of indices I, $\gamma_{i,i}$, ..., $\gamma_{i,i_2,\ldots,i_n}$ $(i_p=1,2,\ldots,2v+1)$ are linearly independent. The spinor representation of the intrinsic orthogonal group L of space $R_{2v+1}^{(s)}$, transformation is given by the group of matrices S determined from Eq. (2), in which the indices p, q acquire values from 1 to 2v+1. The covariant components of spinor ψ_1 are determined by the matrix E:

$$(-1)^{\nu}\gamma_i{}^{\tau}=E\gamma_iE^{-1}.$$

The conjugate spinor ψ in space $R_{2\nu+1}^{(s)}$ is determined by the matrix Π

$$\pm \gamma_i = (-1)^{\nu-s} \Pi_{\gamma_i}^{\cdot} \Pi^{-1};$$

where the sign minus is for i = 1, 2, ..., s.

2. REPRESENTATION OF SPINORS BY COMPLEX TENSOR SYSTEM

Let us consider a complex matrix $\Psi = \{\psi^{ij}\}$ of dimensionality $\underline{\mathbf{r}}$. If $\psi^{ij} = \psi^i \psi^j$, ψ^{ij} must satisfy the equalities

$$\psi^{ij}\psi^{hi} = \psi^{ih}\psi^{jl} = \psi^{il}\psi^{hj}, \quad \psi^{ij} = \psi^{ji}, \tag{4}$$

among which r(r+1)/2 - r equations $\psi^{vv}\psi^{ij} = \psi^{vi}\psi^{vj}$ $(i,j \neq v,\psi^{vv} \neq 0)$ and $^{i}/_{2}r(r-1)$ equations $\psi^{ij} = \psi^{i}\psi^{j}$, are independent. There are in all $(r^{2} - r)$ independent equations. Reciprocally, it follows from (4) that there exists a system of \underline{r} components ψ^{κ} , determined with a precision to signs such that $\psi^{ij} = \psi^{i}\psi^{j}$. In reality, if $\psi^{vv} = 0$ for all v, it follows from (4) that $\psi^{ij} = 0$ for all values of indices \underline{i} , \underline{j} . If $\psi^{vv} \neq 0$, we postulate

$$\psi^h = \psi^{vh} / \pm \sqrt{\psi^{vv}}. \tag{5}$$

By the strength of (4) such a definition of ψ^k does not depend on the value of the index ν . Let us now assume that ψ^{ij} are components of the object Ψ , transforming according to the representation $S \times S$, where S is any representation of a certain group, and let Eqs. (4) be invariant relative to the group $S \times S$. Then the components ψ^k , determined according to (5) will be transformed according to the representation S. Indeed, it follows from (5) that the transformation of ψ^k is determined by the transformation of ψ^{ij} in a single fashion. Evidently, the identity (4) invariantness is maintained if ψ^k is transformed according to the representation S, consequently, by the strength of the uniqueness, ψ^k may be transformed only by the representation S. Thus the object ψ^{ij} , satisfying the identities (4) is equivalent to the object ψ^k .

Let S be the spinor representation of a 2y-dimensional orthogonal group. It is well known that

$$S \times S \sim \sum_{k=0}^{2^{\nu}} D^k,$$

where D^{h} is a representation by which a tensor of rank k, asymmetrical by all indices, is transformed. This means that in this case the object ψ^{ij} is equivalent to the tensor aggregate $\Lambda = \{c_0, c_i, c_{i_1 i_2}, \ldots, c_{i_1 i_2 \ldots i_{2\nu}}\}$. If S is the spinor representation of a (2v + 1)-dimensional group

$$S \times S \sim \sum_{k=0}^{9} D^{2k}$$

 $S \times S \sim \sum_{k=0}^{} D^{2k},$ and consequently, the object ψ^{ij} is equivalent to the tensor aggregate consisting of even rank tensors. The components of the antisymmetrical tensors $C_{i_1i_2\ldots i_k}$ may be determined as follows:

$$c_{i_1 i_2 \dots i_k} = (A_{i_1 i_2 \dots i_k})_{\alpha_1} \psi^{\alpha_3}, \quad A_{i_1 i_2 \dots i_k} = E_{\gamma_{i_1} \gamma_{i_2} \dots \gamma_{i_k}}.$$
 (6)

Inasmuch as $\det \mathbf{E} \neq 0$ and $\forall i_1 i_2 \dots i_k$ are linearly independent, $A_{i_1 i_2 \dots i_k}$ are also linearly independent and consequently, the aggregates Λ are really equivalent to objects ψ^{ij} .

Taking advantage of symmetry properties of C, it may be shown that matrices $A_{i_1i_2...i_k}$ have the following symmetry properties:

$$(A_{i_1 i_2 \dots i_k})^{\mathsf{T}} = (-1)^{(\mathsf{v}(\mathsf{v}+1)+l(l+1))/2} A_{i_1 i_2 \dots i_k}.$$

This is why, so long as ψ^{ij} satisfies the identities (4), part of tensors $c_{i_1i_2...i_k}$ ([v(v+1)+k(k+1)]/2 being odd) become zero. If ψ^{ij} satisfy the identities (4), tensors $c_{i_1i_2...i_k}$ satisfy $\frac{1}{2}2^{\nu}(2^{\nu}-1)$ independent bilinear identities, all of which are included in the generalization of the Pauli identity for the case of a n-dimensional space, (See [2])

$$2^{\nu}(\psi^{+}\theta\psi)(\psi^{+}\theta'\psi) = \sum_{k=1}^{2^{\nu}} \sum_{i_{1} < i_{2} < \dots < i_{k}}^{2^{\nu}} (\psi^{+}\gamma_{i_{1}i_{2}\dots i_{k}}\psi)(\psi^{+}\theta'\gamma_{i_{1}i_{2}\dots i_{k}}\theta\psi) + \\ + (\psi^{+}\psi)(\psi^{+}\theta'\theta\psi), \quad n = 2\nu.$$

$$2^{\nu}(\psi^{+}\psi)(\psi^{+}\theta'\psi) = \sum_{k=1}^{2^{\nu}} \sum_{i_{1} < i_{2} < \dots < i_{k}}^{2^{\nu}+1} (\psi^{+}\gamma_{i_{1}i_{2}\dots i_{2k}}\psi)(\psi^{+}\theta'\gamma_{i_{1}i_{2}\dots i_{2k}}\theta\psi) + \\ + (\psi^{+}\psi)(\psi^{+}\theta'\theta\psi), \quad n = 2\nu + 1,$$

$$(7)$$

where θ' , θ are arbitrary matrices of dimensionality 2^{ν} ; ψ^+, ψ are covariant and contravariant component of the spinor.

Therefore, spinor ψ^k in the space R_n^+ , $n=2\nu$, $2\nu+1$ is equivalent to the tensor aggregate Λ , consisting of complex antisymmetrical tensors satisfying $^{1}/_{2}2^{v}(2^{v}-1)$ bilinear identities (7). By virtue of this, any spinor equation may be written in an equivalent manner as an equation in tensor components $c_{i_1i_2,\ldots,i_k}$.

Note that formula (3) determines the components ψ^k in any system of coordinates, but the transformation of components ψ^k to curvilinear coordinates is found to be nonlinear relative to ψ^k .

REPRESENTATION OF SPINORS BY A SYSTEM OF REAL TENSORS

We shill consider an r-dimensional complex matrix ψ^{pi} . Assume that $\psi^{p\dot{q}}=\psi^{p\dot{}}\psi^{q}$

Then ψ^{pq} will satisfy the identities

$$\psi^{\dot{i}q} = (\psi^{\dot{q}\dot{p}}), \quad \psi^{\dot{m}n} \psi^{\dot{p}} \gamma = \psi^{\dot{m}n} \psi^{\dot{p}n} \tag{8}$$

among which $(\mathbf{r}-1)$ real equations $\psi^{\nu\nu}\psi^{pq}=\psi^{\nu q}\psi^{p\nu}$ $(p,q\neq\nu,\psi^{\nu\nu}\neq0)$ and \mathbf{r}^2 real equations $\psi^{pq}=(\psi^{qp})$ are independent. Obviously, if the components ψ^{k} determine the matrix ψ^{pq} the components $\psi^{k}e^{i\varphi}$, and only they, determine the same matrix ψ^{pq} .

Reciprocally, it follows from (8) that there exists a system of component determined with a precision to the phase $e^{i\varphi}$, such that $\psi^{pq} = \psi^p \psi^q$. In reality if $\psi^{\nu\nu} = 0$ for all ν , it will follow from (8) that $\psi^{pq} = 0$ for all \underline{p} , \underline{q} . In this case we postulate $\psi^k = 0$. If $\psi^{\nu\nu} \neq 0$, we postulate

$$\psi^k = \frac{\psi^{k}}{+V\psi^{k}} e^{i\varphi}, \tag{9}$$

where ϕ is an arbitrary real number.

By virtue of (8) such a determination of ψ^k multiplicity does not depend on the value of \mathbf{v}_{\bullet} It may be shown that only the components ψ^k , determined according to (9) satisfy the equation $\psi^{pq} = \psi^p \dot{\psi}^q$.

Assume that ψ^{pq} are components of an object transforming according to the representation S x S, where S is any representation of a certain group, and let the equalities (8) be invariant relative to the group S x S. Then, we may evidently point to such a law of transformation of φ that the components ψ^{k} transform according to the representation S.

In this way the assignment of the object ψ^{iq} satisfying the identities (8) and of the argument φ of one of the components ψ^k fully determine the object Let S be the spinor representation of a 2γ -dimensional orthogonal group of transmations of the space $R_{2\nu}(s)$. It is well known that

$$S \times S \sim \sum_{k=0}^{2\nu} D^k$$
.

This means that the object ψ^{pq} is equivalent to the tensor aggregate $\Omega = \{\Omega_0\Omega_i \dots \Omega_{i_1i_2\dots i_{2p}}\}$, consisting of antisymmetrical tensors.

If S is a spinor representation in the space $R_{2\nu+1}^{(s)}$, $S \times S \sim \sum_{k=0}^{\nu} D^{2k}$, and in this case the object ψ^{pq} , is equivalent to the aggregate $\Omega = \{\Omega_0\Omega_{i_1i_2}, \ldots \Omega_{i_1i_2...i_{2\nu}}\}$, consisting of antisymmetrical tensor of even rank.

The components of these tensors my be determined as follows:

$$\Omega_{i_1i_2...i_k} = (D_{i_1i_2...i_k})_{\alpha_1} \psi^{\alpha\beta}, \quad D_{i_1i_2...i_k} = E\Pi_{\gamma_{i_1}\gamma_{i_2}} \dots \gamma_{i_k} i^{k(k+1)}^2.$$

Utilizing (3), we may show that matrices $p_{i_1i_2...i_k}$ are Hermitian.

This is why, the components $\Omega_{i_1i_2...i_k}$ are real if ψ^{pq} satisfy the identity $\psi^{pq}=(\psi^{qp})\cdot$ If ψ^{pq} satisfy the identities (8), the components of tensors $\Omega_{i_1i_2...i_k}$ satisfy $(2^{\checkmark}-1)^2$ bilinear identities, of which everyone is contained in the identity (7).

Therefore, the assignment of the aggregate Ω and of argument φ of one of the components fully determines the spinor. This means that the spinor equations

may be written in an equivalent manner in components of the aggregate Ω and φ . Then, eliminating from such equations the argument φ , it is possible to obtain a closed system of equations in components of aggregate Ω .

I wish to express my gratitude to L. I. Sedov for his valuable indications in the course of the work on the paper.

**** THE END ****

Moscow State University in the name of M. V. Lomonosov

Manuscript received on 24 February 1966

Contract No.NAS-5-12487 VOLT TECHNICAL CORPORATION 1145, 19th st NW WASHINGTON D.C. 20036 Tel: 223 - 6700 Translated by ANDRE L. BRICHANT

on 4-5 October 1966

REFERENCES

- 1. J. A. SHOUTEN. Indag. Math, 11, 3, 4, 5 (1949)
- 2. K. M. CASE. Phys. Rev., 97, 3, 810, 1955.

DISTRIBUTION

GODDARD SPACE F.C.	NASA HQS	OTHER CENTERS
100, 110, 400, 601 610, 611, 612, 613 614, 615, 620 630 GI for SS (3)	SS NEWELL, NAUGLE SG MITCHELL-SMITH SCHARDT DUBIN	A M E S R C SONETT (3) LIBRARY
640 HESS (3) 641 SCHMID (3) STUMPFF (12) MUSEN KELSALL DAVIS	SL FELLOWS HIPSHER HOROWITZ SM HOSTER GILL RR KURZWEG	LANGLEY RC 116 KATZOFF 303 ROBERTS 160 ADAMSON 185 WEATHERWAX (3)
542 VELEZ 547 SIRY 730 STAMPFL 252 LIBRARY 256 FREAS VOLT NOLAN	RRA WILSON (3) RTR NEILL USS WHITING WX SWEET	J P L 111-113 LIBRARY (3) Vis.Lab WYCKOFF plus perm.addressees